Measuring Level-K Reasoning, Satisficing, and
Human Error in Game-Play Data

Tamal T. Biswas
Department of CSE
University at Buffalo

Ambherst, NY 14260 USA
Email: tamaltan @buffalo.edu

Abstract—Inferences about structured patterns in human de-
cision making have been drawn from medium-scale simulated
competitions with human subjects. The concepts analyzed in
these studies include level-k thinking, satisficing, and other human
error tendencies. These concepts can be mapped via a natural
depth of search metric into the domain of chess, where copious
data is available from hundreds of thousands of games by
players of a wide range of precisely known skill levels in real
competitions. The games are analyzed by strong chess programs
to produce authoritative utility values for move decision options
by progressive deepening of search. Our experiments show
a significant relationship between the formulations of level-k
thinking and the skill level of players. Notably, the players are
distinguished solely on moves where they erred—according to
the average depth level at which their errors are exposed by the
authoritative analysis. Our results also indicate that the decisions
are often independent of tail assumptions on higher-order beliefs.
Further, we observe changes in this relationship in different
contexts, such as minimal versus acute time pressure. We try
to relate satisficing to insufficient level of reasoning and answer
numerically the question, why do humans blunder?
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I. INTRODUCTION

Decision making under risk and uncertainty is a prime focus
of several disciplines in mathematical and social sciences,
ranging from mathematical decision theory through machine
learning and artificial intelligence to economics and psychol-
ogy. The path of entry to the former emphasizes normative
utility values and costs, competitive strategies, theoretical
equilibria, and descriptive theories of behavior. The Al and
human-behavior sides start from how knowledge is gained and
search may be strategized. The latter areas include concepts
of behaviors that deviate from rationality and theoretically
optimal (equilibrium) strategies. Studies applying these ap-
proaches have involved staged competitions with human sub-
jects dedicated to the study; we mention in particular the “Iowa
gambling study” [1], [2], the “Colonel Blotto game” [3], the
“11-20 money request game” [4], [5], the “beauty contest”
game as implemented by [6], and others in [7], [8], [9]. Their
concepts include k-level reasoning [10], [11], which involves
estimating the depth of interaction with one’s opponent(s),
satisficing introduced by [12], which means “settling” for
a known outcome without looking deeper for a better one,
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and other forms of human (or agent) fallibility based either
on insufficient resources for managing complexity (bounded
rationality) or on lapses of attention or effort. For example,
the 11-20 game enables each player to select a prize of any
value from $11 to $20, with a $20 bonus if the value is exactly
$1 less than the opponent’s value. A satisficer might just take
$20 and run, whereas a level-1 strategizer might try $19, a
level-2 thinker $18, and so on.

The distinctive approach in this paper is to map these
concepts into a long-established game domain, namely com-
petitive chess, in which large amounts of data from real
competitions are available from millions of moves played
in hundreds of thousands of high-level recorded games. The
decisions—indeed the utilities of all alternative moves besides
the one chosen—are authoritatively judged by chess programs
run to high search depths at which they outperform any
human player. The common element of depth in the human
cognitive concepts maps to the progressively increasing search
depths, at each of which the programs report values for each
move. The manner in which these values change between
depths—as deeper flaws in “trap” moves and deeper value in
“surprise” moves are revealed—affords precise mathematical
formulations of the mapped concepts. Thus we blend the
mathematical and psychological approaches at an instrumental
level below the top-level analysis of our experiments. The goal
is to test how well conclusions from these studies hold up
under this mapping into a rich-data environment.

Our most distinctive element over many previous chess-
based studies [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23] is the employment of chess program values
at lower depths of search. This seems quixotic insofar as
the highest-available depth values are the most authoritative,
and any change in value of a move could be regarded as
correcting a flaw in less-intensive data-taking. The use of depth
by [24], [25] involves only the top two depths. Following [26]
we use the intermediate-depth utility values as markers for
the gain and taking stock of knowledge. Via these markers
we give mathematical formulations for patterns that underpin
concepts of level-k reasoning and sensitivity to changes in
information or extrinsic value of options. We seek deeper
roots for behaviors that have not been convincingly captured
by a single-thread approach, notably the ability to handle



complexity and change, satisficing behavior, and the human
tendency to blunder.

We highlight a particular kind of mistaken decision: one
that looks best at first sight but whose drawbacks are re-
vealed by deeper consideration. Satisficing—Herbert Simon’s
portmanteau of “satisfy” and “suffice”—is recognized by [27]
as ‘as a decision-making strategy or cognitive heuristic by
which humans search through available alternatives until an
acceptability threshold is met, whereupon they stop searching
and choose.” We seek its origin in a middle ground between
two modes of thought highlighted by Daniel Kahneman and
Amos Tversky and others in various studies [28], [29], [30],
[31], [32], [33], [34]: thoughts and preferences that come
naturally to mind without reflection, versus a controlled but
slow mode of deliberate thinking. It is easy to find conditions
for blundering in the former, but we believe that progress
on analyzing patterns that lead to blunders will come via the
following questions:

o« How can we treat satisficing in terms of the above
quantified criteria?

o How can we measure the level-k thinking threshold for
satisficing?

o How deeply must an expert decision maker in any par-
ticular think to be reasonably sure of a good outcome?

o How much difference between decision makers at various
depth levels should be expected in order to frame a good
group decision?

We report progress from chess experiments mainly on the
first two questions. We define a metric of swing in value across
depths that yields a precise formulation of a depth threshold
for satisficing. We demonstrate that the measured threshold
varies uniformly with a player’s rated skill. It is notable that
we obtain a strong relationship while considering only those
moves on which strong players made mistakes—as opposed to
the many other moves on which they demonstrate their skill
positively. Thus we have isolated a sub-surface phenomenon
that affects human decision making under adversarial con-
ditions of imperfect knowledge. We investigate this also in
games under greater time pressure.

Our approach is different from usual level-k models where
the population is partitioned into fypes that differ in their depth
of reasoning. A player of level-k type takes action considering
the opponent is a level k£ — 1 type. Such notions are clear in
the “11-20” game defined above where the type is identified
simply by the number chosen. The above-cited papers study
how these types change as players “learn” in repeated plays of
the game, but this setting promotes unidirectional results. The
real-world difference here is that “k-ness” is fluid with players
engaged in hundreds of repetitions of the basic move-choice
task in variegated game positions under budget constraints of
concentration energy and thinking time. The use of values
from all program search depths affords modeling players as
distributions over thinking at various levels “k.” Thus we
provide a large-data refracting prism by which to isolate robust
conclusions across a spectrum of situations and skill levels.

II. CHESS DATA AND METHODOLOGY

Humans and computers are both rated on the common Elo
scale [35] on which 1000 is a typical rating for a novice player,
1600 for an avid amateur player, 2200 is considered “master,”
and only the past (retired) world champion Garry Kasparov
and the current world champion Magnus Carlsen have ever
achieved ratings considerably beyond 2800. The computer
programs Stockfish 6 and Komodo 9 are however rated above
3300 on common PC hardware, and many other programs and
versions surpass 3200 [36]. A 400-point advantage in rating
confers over 90% expectation in matches and is considered
total superiority. In the meantime, chess retains extraordinary
absolute complexity with game trees of average depth 80 plies
(meaning a move for White or Black) and average branching
factor (i.e., number of legal moves in a position) about 35
[37]. This combination is distinctive to chess as opposed to
Go [38].

Iterative deepening means that the search in a given position
p is organized in rounds of basic depth d = 1,2,3,... plies.
Via the standard Universal Chess Interface (UCI) protocol,
the engine reports values v; 4 for every legal move m; in p at
every depth d. The search ends at a maximum depth D that is
either fixed or determined by the engine’s own time budgeting.
Stockfish reports values from d = 1 but can reach depths D
above 20 within minutes on common PC hardware.

All the programs give similar values in relation to the win
expectation curve [39], which is a smooth logistic curve
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dependent variable respectively. As reported in Figure 1, the
a-values of a for the engines are close.
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Fig. 1. Win expectation vs. position evaluation for various engines

Table I demonstrates an example of the data obtained
by setting the engine in “Multi-PV” mode to give equal
consideration to all legal moves (a cap of 50 served), with



TABLE I
EXAMPLE DATA FROM STOCKFISH 6. BLACK TO MOVE (POSITION CODE 8/7B/8/2PKP2R/P6P/PBK5/6PP/3R4 B), SO LOWER IS BETTER

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

Ral 187 | 187 | 187 | 187 | 206 | 197 | 209 | 075 | 027

021 | 041 | 012 | 017 | 010 | 006 | 006 | 005 | 005 | 005

Rel 175 | 198 | 173 | 132 | 126 | 136 | 092 | 129 | 088

074 ] 082 | 059 | 053 | 062 | 065 | 055 | 045 | 031 | 040

h3 182 | 182 | 092 | 225 | 118 | 118 | 098 | 103 | 090

082 | 078 | 054 | 048 | 043 | 082 | 088 | 086 | 070 | 069

Kc6 | 192 | 192 | 192 | 198 | 189 | 174 | 189 | 180 | 126

114 | 129 | 129 | 132 | 105 | 089 | 089 | 093 | 100 | 106

Rgl 184 | 184 | 184 | 105 | 095 | 108 | 098 | 129 | 111

100 | 110 | 127 | 131 131 138 | 117 | 126 | 125 | 119

Rcl | 053 | 166 | 174 | 191 | 108 | 122 | 095 | 150 | 078

098 | 110 | 107 | 113 | 113 | 094 | 093 | 089 | 115 | 121

evaluations from white’s point of view in units of centipawns,
figuratively hundredths of the value of a pawn. The moves
are sorted by their evaluation at the highest depth. The grid
reveals that the move “Rcl” was the best candidate at the
beginning of the search process, but was superseded by the
ultimate best move “Ral” from depth 8 onward. We can say
that its inferiority was exposed between depths 7 and 8, and
this underlies our notion of depth of satisficing.

In symbolic terms, we represent the moves as m; where
i€ (L---¥) and ¢ is the number of legal moves. The move
my represents the engine provided best move at depth D, the
highest depth of analysis. Each value v; 4 in the table is the
evaluation of move m; at depth d, while the best evaluation
at depth d is denoted by v, 4. These values are scaled as
described and justified in [20], [21], [26]; the details do not
concern us here. The difference in optimality of m; at depth
d is denoted by

0i.d = Vs,d — Vi.d,

The best move provided by the engine at the highest depth
has §;,p = 0, while simple blunders are characterized by high
0i,4 values across all or many depths. We identify two other
main categories of moves, swing-up and swing-down moves,
as follows:

o A move swings up if its delta values with respect to the
best move at any depth decrease with increasing depth.
Figuratively, these are moves whose potential is only
manifested at higher depth.

o A move swings down if an initially low delta value be-
comes markedly higher with increasing depth, indicating
it is ultimately a poor move to play.

The definition of swing for move m; is the sum of differ-
ences in delta values between any depth d and the highest
depth D:

D
sw(m;) = Z((Sz‘,d —di,p)-

d=1

For a swing-up or swing-down move the value sw(m;) is
positive or negative respectively. Note that it is possible for an
inferior move to have positive swing—it may be less inferior
than it was at earlier depths.

Finally, for any move m; other than m; that was ranked
higher than m; at some earlier depth, we can define d;
to be the maximum d such that v; 4 > vy 4. The swing
measure sw(m;) quantifies how attractive m; was at earlier
stages of consideration relative to its ultimate inferiority. It

can serve as a weight on d; or a selection criterion for d;;
our further measures of “difficulty” and “complexity” in [26]
are analogous to the former but here we do only the latter.
The average of d; for moves m; in a sample—selected by
a threshold on sw(m;) and characteristics of the player(s)
involved—is the depth of satisficing in the sample.

Our main data set comprised games where both the players
are within 10 Elo rating points of a milepost value 2200,
2300, ..., 2700. Each of the games was run under standard
time controls, typified by 90 minutes for the first 40 moves
followed by 30 minutes for the rest of the game with an
additional 30 seconds per move after the 60th move. Our
second data set comprises 589 games containing 42,753 moves
in tournaments since 2007 where the current and previous
world champions both participated. These games featured the
world’s elite players and give a general overview of the style of
game-play and positions these players face and produce. The
tables presented here come from analysis by Stockfish 6; we
obtained closely similar results using Komodo 9. Both engines
were configured to produce analysis up to depth 19 producing
up to 64 principal variations at each depth. We have analyzed
these recorded evaluations to quantify depth for satisficing and
estimate player quality.

III. RESULTS

Table II shows the distribution of swing-up (where played
move has positive swing) versus swing-down (where played
move has negative swing) moves. This data represents that
with increasing skill, players play fewer negative swing moves
and overall for any rated players, the number of swing down
moves is below 20% of the total moves.

TABLE I
MILEPOST DATA SET STATISTICS

Dataset #moves | Swing+ | Swing- | Swing+ % | Swing- %
RR2200 | 35893 29769 6124 82.94% 17.062%
RR2300 | 41757 34943 6814 83.68% 16.32%
RR2400 | 37768 32099 5669 84.99% 15.01%
RR2500 | 44185 38818 5367 87.85% 12.15%
RR2600 | 67772 59115 8657 87.23% 12.77%
RR2700 | 22414 19757 2657 88.15% 11.85%

Figure 2 demonstrates the average error for both the played
move and the engine move versus depth of analysis for all
moves without any distinction. Figure 2a shows the results
for 2200 Elo players, whereas Figure 2b shows results for
2700 Elo players. We observe no significant distinction in the
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Fig. 2. Average aggregate error for played move and engine move vs. depth
for all moves

playing pattern of various levels of skilled player with respect
to depth. All positions can be divided into two groups:

o Played move having negative swing (‘“swing down”);
« Played move having positive swing or zero (“swing up”).

Figures 3a and 3b again show little difference between
rating level when considering only swing-up moves. Though
the graph demonstrates that the played-move swing for higher-
rated players matches the engine move swing much more
closely, still no distinction between various depths is promi-
nent.

Finally, we consider the set of positions with played moves
with negative swing. Figure 4 graphs the average error for the
played move and the engine move versus depth for 2200 and
2700 players. The played-move curves for players between
these ratings (not shown) fall in between those of these plots.
Upon fitting all the curves by cubic polynomials, for each and
every plot we find a very distinct intersection point where the
engine move error and played move error intersect. This is a
persistent empirical phenomenon. It is indicated already by the
relative nearness of the curves at low depths over all moves
and the steady apartness at low depths over swing-up moves.
We call the depth at this intersection point the aggregate depth
of satisficing for the sample.

Graphing it versus rating clearly shows how the aggregate
depth of satisficing moves towards higher depth with increas-
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Fig. 3. Average aggregate error for played move and engine move vs. depth
for moves with positive swing

ing skill. The depth at this intersection point is where the
engine move and played move are reversing their role, i.e.,
before this point, the played move had lower delta at that
particular depth than the engine move. Beyond the depth of
satisficing, the played move’s evaluation becomes relatively
worse. We say a strong player goes deeper before being
tricked, whereas a lower-skilled player gets tricked easily
without further contemplation.

Thus swing-down moves, although comprising less than
20% of the total moves, provide a clear indication of the
player’s skill level and show a decision maker’s threshold of
blundering. This small number of turns also contain more
information to distinguish the player than turns where the
player agreed with the engine’s first move and those with
played move swinging up. The intersecting points clearly
define how players of different skill levels can be segregated
best on the depth of satisficing.

Next we analyze these moves further to figure out whether
this phenomenon is consistent across the whole game and how
it is affected by time pressure on decision making. Again,
owing to the standard time control at 40 moves, we expect to
see the effect of time pressure at turns closer to 40. Even top-
level players use most of their time before turn 30 and are then
forced to play without much thinking time until the refresh at
move 41. Similar conditions apply to the ends of long games.
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Our analysis shows a significant effect that is ascribable to this
behavior. We have considered all swing-down played moves
before turn 40. We split this selection in almost two equal
parts, one containing moves numbered 9 to 25, the other from
26 to 40. Figure 5 shows how 2200 and 2700 rated players
played at the beginning of the game play from move 9 to move
25. We find, the depth of satisfying is higher for 2700 players
than 2200 players. But for both these players the depth for
satisficing is higher than that we achieved when we considered
all moves. This phenomenon is consistent for every milepost
rating level.

Figure 6 shows 2200 and 2700 players’ depth for satisficing
in time pressure. As expected, both the players play subpar
in time pressure as the depth for satisficing gets reduced
drastically for moves between 26 and 40. In figure 7, we have
plotted the depth for satisficing for all these three scenarios
over players of all the ranks. A simple linear fit nicely
represents the relation between the skill and the depth of
satisficing. In the next section we further demonstrate how
far this relationship holds for individual players.

IV. CASE STUDY ON QUALITY AND BLUNDERS

Our final data set comprises games from recent top-level
events involving the previous and present world champions,
V. Anand and M. Carlsen. Selecting the games between them,
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Fig. 5. Average error for played move and engine move vs. depth for moves
between 9 and 25 with negative swing

we try to investigate the effect of the depth for satisficing for
these two players at different phases of the game. We further
try to relate their strength of play at those positions by their
swing down played moves.

We derive a mapping from the depth for satisficing to the
Elo for three scenarios namely, all moves, moves from 9 to
25 and moves from 25 to 40. From the linear fit presented in
Figure 7, we come up with the conversion as follows:

Elo, = (S, + 3.5521)/0.0045 (1)
Eloy, = (S, + 3.7034)/0.0050 )
Elo. = (S, + 6.5687)/0.0054 3)

where Elo,, Eloy, Elo. represents Elo considering all moves,
till moves 25, and for moves 26-40 respectively. Similarly,
Sa, Sp, Sc represents the respective depth for satisficing.

For an extremal test we apply this scale to the Anand and
Carlsen as shown in Figure 8 and the following table.

TABLE III
ESTIMATION OF ELO

All Moves Moves 9-25 Moves 26-40

Sa Flog Sh FElop | Se FElo.
M. Carlsen | 9.348 2867 11.095 | 2960 | 8.5238 | 2794
V. Anand 9.8407 | 2976 10.885 | 2918 | 9.3472 | 2947
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Table III infers that Carlsen considerably thought at a higher
depth at the beginning of chess games, which might explain his
observed propensity to outplay other players immediately after
the early opening phase and the secret for his very high Elo
for blitz and rapid games. The model reports ratings for Anand
that are higher than his actual Elo. That signifies a lower
tendency to blunder due to the insignificant from insufficient
depth of reasoning. Considering all moves, we found Anand
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Fig. 8. Depth for satisficing for Anand and Carlsen

makes 3.63% more overall error compared to Carlsen, inferred
as lower ability to find the optimal move when the played
move and engine move both swing up.

V. CONCLUSIONS AND FUTURE WORK

We have quantified measures for level-k thinking and satis-
ficing in chess and have demonstrated their impact from real-
world data. We have coined and justified a new term ‘depth for
satisficing’ to quantify the measure of ‘satisficing’ and found a
strong correlation between skill level and depth for satisficing.
It is noteworthy that the results were derived from selecting
moves representing mistakes by strong players, and via lower-
depth numeric components that in analogous situations might
have been thought dismissible as “noise.” We show that these
errors contain much information about the decision maker in
a most concise way.

The strength of our correlation lends support to the interpre-
tation that the players go with the highest-level estimations of
value that they reach, disregarding considerations at earlier
stages. In the analogous situation of the 11-20 game, the
Nash-optimal strategy is a distribution over the ten number
choices that includes playing the “naive” choice of ‘20’ exactly
5% of the time, down to 25% for ‘15’ and nothing below,
which [5] shows is approached in time pressure but not under
repeated plays. In the chess setting, similar use of a distribution
would convey epistemologically doubting one’s conclusions



and giving weight to earlier estimates in what would be felt as
a roll of the dice or intuitive leap. Our results speak that were
such behavior in force in high-level chess at standard time
controls, then we would see a fuzzier, noisier correlation with
significantly lower overall depth values—such as we do see
for time-pressure moves. Thus we regard our large field data
as supporting the reality of non-equilibrium behavior under
the conviction of the estimation reached at a “plateau” of
the thinking process, and further, Strzalecki’s contention [9]
that the level-k choices are largely “independent of the tail
assumptions on the higher order beliefs.”

Our model is conducive to formulating the difference be-
tween a blunder and a gamble. The latter means an objec-
tively sub-optimal move that nevertheless poses such a high
challenge to the opponent that the likelihood of an opponent’s
error gives the player a higher expectation than the optimal
(i.e., “safest”) move. This requires identifying game decisions
where players make a sub-optimal decision with the divinable
intention to decoy the opponent. Another aspect to investigate
is error recovery, which may follow unsuccessful gambling or
inadequate long-term planning, and might profit from a blun-
der by the opponent. A longer objective is a learning model
for humans that generates problems for humans, provides
feedback based on the responses, and tailors the difficulty and
complexity of subsequent problems accordingly in order to
aid in the learning process of the human. We hope that if
artificial agents can be produced for other decision domains,
this same approach can be applied to judge human decisions
more accurately [40], replacing reactive criticism of mistakes
by considerations of depth as a measure of expertise.
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